Files
ControlPatente/alpr-service/main.py
2026-01-12 21:19:01 -03:00

130 lines
4.2 KiB
Python

import cv2
import easyocr
import requests
import os
import time
import threading
import numpy as np
import re
from flask import Flask, Response
from flask_cors import CORS
from ultralytics import YOLO
# Configuration
BACKEND_URL = os.environ.get('BACKEND_URL', 'http://localhost:3000')
CAMERA_ID = 0
# Bajamos un poco el intervalo para ser más reactivos
PROCESS_INTERVAL = 2.0
CONFIDENCE_THRESHOLD = 0.4
MODEL_PATH = 'best.pt'
app = Flask(__name__)
CORS(app)
outputFrame = None
lock = threading.Lock()
latest_detections = []
def send_plate(plate_number):
try:
url = f"{BACKEND_URL}/api/detect"
payload = {'plate_number': plate_number}
requests.post(url, json=payload, timeout=3)
except Exception as e:
print(f"Error sending plate: {e}")
def alpr_loop():
global outputFrame, lock, latest_detections
print("Initializing EasyOCR...")
reader = easyocr.Reader(['en'], gpu=False) # EasyOCR es pesado en CPU
print(f"Loading YOLO model...")
try:
model = YOLO(MODEL_PATH)
except Exception as e:
print(f"Critical Error: {e}")
return
cap = cv2.VideoCapture(CAMERA_ID)
# Configuración de cámara - usar resolución soportada
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) # Forzar MJPG
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
cap.set(cv2.CAP_PROP_FPS, 30)
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1) # Mantener el buffer al mínimo
last_process_time = 0
while True:
# OPTIMIZACIÓN 2: Vaciar el buffer de la cámara
# Leemos varios cuadros pero solo nos quedamos con el último
for _ in range(4):
cap.grab()
ret, frame = cap.retrieve()
if not ret:
continue
current_time = time.time()
# Procesamiento ALPR
if current_time - last_process_time > PROCESS_INTERVAL:
last_process_time = current_time
# Ejecutar YOLO (verbose=False para no saturar la terminal)
results = model(frame, verbose=False, imgsz=256) # imgsz=320 acelera mucho
detections = []
for r in results:
for box in r.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = float(box.conf[0])
if conf > 0.5:
detections.append((x1, y1, x2, y2, conf))
plate_img = frame[y1:y2, x1:x2]
# OCR es la parte más lenta
try:
# OPTIMIZACIÓN 3: Solo leer el texto esencial
ocr_results = reader.readtext(plate_img, detail=0, paragraph=False, workers=0)
for text in ocr_results:
clean_text = ''.join(e for e in text if e.isalnum()).upper()
validate_and_send(clean_text)
except:
pass
with lock:
latest_detections = detections
# Dibujar resultados para el stream
display_frame = frame.copy()
with lock:
for (x1, y1, x2, y2, conf) in latest_detections:
cv2.rectangle(display_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
outputFrame = display_frame
time.sleep(0.01)
def validate_and_send(text):
if re.match(r'^[A-Z]{4}\d{2}$', text) or re.match(r'^[A-Z]{2}\d{4}$', text):
send_plate(text)
def generate():
global outputFrame, lock
while True:
time.sleep(0.05)
with lock:
if outputFrame is None: continue
(flag, encodedImage) = cv2.imencode(".jpg", outputFrame, [cv2.IMWRITE_JPEG_QUALITY, 70])
yield(b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n')
@app.route("/video_feed")
def video_feed():
return Response(generate(), mimetype="multipart/x-mixed-replace; boundary=frame")
if __name__ == "__main__":
t = threading.Thread(target=alpr_loop, daemon=True)
t.start()
app.run(host="0.0.0.0", port=5001, debug=False, threaded=True, use_reloader=False)